

Data Management – Making it Matter and Helping it Flow

- Part 1: Introduction IWRM and how data management connects
- Part 2: Information in Water Quantity and Water Allocation
- Part 3: Information in Water Quality Management
- Part 4: Other aspects of IWRM and information management needs
- Part 5: Discussion

Information Cycle

Three Levels in Water Resources Management

Operational Water Resources Management

Water Resources Planning

Three Levels in Water Resources Management

Operational Water Resources Management

Water Resources Planning

Water Quantity / Allocation

- 1) How much water do we have?
- 2) How much water do we need?

Operational Water Management

Defining the Resource - Primary Data

River Flow Data – Water Levels

Automatic and Manual Water Level Recorders

AWLR trace diagram

Streamflow Measurements for rating curve development

Defining the Resource - Primary Data

River Flow Data – Rating Curves

Current-meter discharge measurements are made by determining the discharge in each subsection of a channel cross section and summing the subsection discharges to obtain a total discharge.

Development of Rating Curves

Defining the Resource - First Level Assessment

River Flow Data – Rating Curves to Hydrographs

Rating Curves

Development of Hydrographs

Defining the Resource – First Level Assessment

River Flow Data – Hydrographs and Flow Statistics

Storm Hydrographs

N = 5	Forecast Flow	Observed Flow	Difference (fi - o _i)	Absolute Difference fi-o _i	Squared Difference (fi - o) ²
	500	600	-100	100	10,000
	350	250	+100	100	10,000
	400	350	+50	50	2500
	750	900	-150	150	22,500
	600	600			0
Sum (E)	2600	2700	-100	400	45,000

$$\begin{aligned} MAE &= \frac{1}{N} \sum_{i=1}^{N} \|f_{i} \cdot o_{i}\| & ME &= \frac{1}{N} \sum_{i=1}^{N} (f_{i} \cdot o_{i}) \\ iE &= \sqrt{\frac{1}{N} \sum_{i=1}^{N} (f_{i} \cdot o_{i})^{2}} & Bias &= \frac{\sum_{i=1}^{N} f_{i}}{\sum_{i=1}^{N} O_{i}} \end{aligned}$$

Annual Hydrographs

ARI (years)	Probability of occurrence in any given year	Percent chance of occurrence in any given year 0.1%	
1000	1 in 1000		
500	1 in 500	0.2%	
100	1 in 100	1%	
50	1 in 50	2%	
20	1 in 20	5%	
10	1 in 10	10%	
5	1 in 5	20%	
2	1 in 2	50%	
1	1 in 1	100%	

Flow Statistics

Defining the Resource Primary Data

...including snow and ice data

Defining the Resource Primary Data

...there may be reservoirs

Defining the Resource Primary Data

...groundwater sources

Operational Water Management

Irrigation....

large scale.....small scale

Domestic water supply and sanitation

Urban and Rural

Industry

Environment

Hydropower

Supply – Demand Balance

Resource Type	Data Quality	Demand Type	Quantity Information
River Flow	Medium	Irrigation	Inaccurate
Groundwater	Limited	Water Supply	Accurate
Reservoirs	Accurate	Industry	Inaccurate
		Environment	Inaccurate

Information Cycle

Spatial Aspects

Three Levels in Water Resources Management

Water Resources Planning

Operational Water Resources Mgmt.

Water Resources Planning

Defining the Resource For Planning

Meteorological Data

Final Hydrograph (cm/s)

Historical Discharge in Surra, Azerbaijan (1950-2010)

Information for Planning – Third Level Assessment

River Flow Data – Time Series and Trends

Spectral Analysis of Flow

Groundwater Analysis and Information

Population Growth

Economic Trends

Industrial Development

Land use and change

Climate Change

Information Cycle

