

Transboundary Diagnostic Analysis of the Botswana Portion of the Okavango River Basin:

Output 4: Water

Supply and Sanitation

Wellington R.L. Masamba Harry Oppenheimer Okavango Research Centre

July 2009

Environmental protection and sustainable management of the Okavango River Basin EPSMO

SOCIOECONOMIC SERIES

TRANSBOUNDARY DIAGNOSTIC ANALYSIS OF THE BOTSWANA PORTION OF THE OKAVANGO RIVER BASIN

Output 4: Water Supply and Sanitation

Wellington R.L. Masamba

Harry Oppenheimer Okavango Research Centre

University of botswana

P/Bag 285

Maun

Botswana

July, 2009

TABLE OF CONTENTS

AKNOWLEDGEMENTS	5
ACRONYMS AND ABBREVIATIONS	6
EXECUTIVE SUMMARY	7
The findings of this work are as follows:	7
1. INTRODUCTION	9
The terms of reference for this work are:1	1
a. Assess requirements (quality, quantity, timing) of existing and planned formal water supply schemes	11
2. METHODOLOGY	12
2.1 Workshop1	12
2.2 Discussions with Government Officers 1	2
2.3 Literature1	12
3. WATER DEMAND FOR BOTSWANA 1	13
3.1 Urban Water Demand1	13
3.2 Rural Demand1	13
3.3 Water demand for Agriculture1	16
3.4 Livestock1	16
3.5 Wildlife water consumption1	6
3.6 Environmental water requirements for the environment1	6
4. THE OKAVANGO DELTA AREA1	8
4.1 Existing domestic water schemes1	8
4.2 Future Domestic water schemes	20
4.3 Total present and future water abstractions	20
4.3.1 Surface water	20
4.3.2 Groundwater	21
4.3 Direct Household Use	23
4.4 Water usage by tour operators in the Okavango Delta	23
4.4. Surface Water Quality	24
4.5 Groundwater	24
5.0 ON SITE SANITATION IN BOTSWANA	28

6.0	SANITATION IN NGAMILAND	. 31
7.0	CONCLUSIONS	. 34
8.0	RECOMMENDATIONS	. 35
REFE	RENCES	. 36

LIST OF FIGURES

Figure 1. Urban water demand for Botswana in 2004/2005	13
Figure 2. Major groundwater resources of Botswana	14
Figure 3. Major aquifer resources and abstraction rates	15
Figure 4. Location of present groundwater abstractions	22
Figure 5. Location of future groundwater abstractions	23
Figure 6. Faecal coliform counts beteenMohembo and Shakawe	25
Figure 7. On site sanitation in Botswana	29
Figure 8. Main wastewater treatment plants in Botswana	30

LIST OF TABLES

Table 1. List of organisations and their water portfolios for Botswana	9
Table 2. Regional rural water demand for 2005	16
Table 3. Environmental Flow Requirements of 4 rivers	17
Table 4. Domestic water demand and production for areas supplied by the North West Distri	ct
Council (Data from NWDC) and Department of Water Affairs (data provided by DWA, Maun)	18
Table 5. Surface water abstraction from the Okavango Delta	20
Table 6. Groundwater abstractions in the Okavango Delta area	21
Table 7. Concentrations of various parameters in surface water of the Okavango Delta	26
Table 8. Groundwater quality.	27
Table 9. Comparison of adequacy of sanitation services in Botswana	28
Table 10. Sewarage coverage of Botswana	29
Table 11. On site sanitation for Botswana and Ngamiland	32
Table 12. Progected wastewater generation rates, 2006-201	33

AKNOWLEDGEMENTS

I would like to thank Mr. July of Northwest District Council and Dr. Naido and Mr. T.C. Tshere of the Department of Water Affairs for information on water supply and consumption. I would also like to thank Mr. M. Dhliwayo who prepared some of the maps in this report, and the participants of the knowledge capture workshop that took place on 24th and 25th February 2009 and 5th and 16th July for their input.

ACRONYN CSO	IS AND ABBREVIATIONS Central Statistics Office
DO	Dissolved oxygen
DWA	Department of Water Affairs
EC	Electrical conductivity
EFR	Environmental Flow Requirements
EPSMO	Environmental Protection and Sustainable Management of the Okavango River Basin
GDP	Gross Domestic Product
GEF	Global Environment Facility
MoA	Ministry of Agriculture
MPWWS	Master Plan for Waste Water and Sanitation
NAMPAADD	National Agricultural Master Plan for Arable Agriculture and Dairy Development
MI/year	Million litres per year
NDP	National Development Plan
NWDC North	West District Council
NMPWWS	National Master Plan for Wastewater and sanitation
NWMPR	National Water Master Plan Review
OKAKOM	Permanent Okavango River Basin Water Commission
ORB	Okavango River Basin
ODRS	Okavango Delta Ramsar Site
SAP	Strategic Action Program
TDA	Trans-boundary Diagnostic Analysis
UFW	Unaccounted for water
WDS	Water Development Sector
WWTP Waste	water Treatment Plant
	Zambazi Watercourse Commission

ZAMCOM Zambezi Watercourse Commission

EXECUTIVE SUMMARY

This report covers the water and sanitation component of the Trans-boundary Diagnostic Assessment (TDA) whose term of reference:

Assess requirements (quality, quantity, timing) of existing and planned formal water supply schemes

Assess requirements (quality, quantity, timing) of informal hosehold direct use of river water for the Botswana part of the ORB

Assess current and projected changes in sanitation services in the Botswana part of the ORB.

The findings of this work are as follows:

- 1. In Botswana, water responsibilities are distributed between seven different institutions
- 2. All the rivers in Botswana except the Okavango and the Chobe/Zambezi are ephemeral hence groundwater is a vital resource which is used in most water supply schemes
- Urban demand is 125,200 million litres consumed (2005) and highest for domestic uses (33%) followed by unaccounted for losses (20%) then mining (19%) and institutional uses (18%). Rural demand is at 63,300 million litres/annum
- 4. Rural demand is 63,300 million litres per year
- 5. The projected water demand for irrigated agriculture in 2012 when NAMPAADD is fully implemented is 53,000 million litres/year of which 11,500 million litres/year is expected to be from groundwater.
- 6. The water demand for livestock is estimated at 44,500 million litres/annum while that for livestock is estimated at 6,000-10,000 million litres/annum
- 7. A study has estimated that the environmental flow requirement for the Okavango is 390 m³/s in the panhandle.
- Of the total daily domestic water output of 15,501 m³/day for the Okavango Delta region, 13,317 m³/day (85.9%) is from groundwater. The projected demand up to 2015 for the Delta region is 28,611 m³/day
- 9. Total surface water abstractions for 2005 for the Okavango Delta region were 46,540 m³/day with a projected abstraction of 68,074 m³/day in 2025.
- 10. Water demand by settlements that draw water directly from the river is estimated at 94 m³/day; and is therefore insignificant compared to other users.
- 11. Total groundwater abstraction for 2005 was 16,446 m³/day for the Okavango Delta area and was projected to increase to 44,371 m³/day.
- 12. Large scale abstractions upstream may affect water availability for various uses
- 13. Upstream pollution may affect water quality for various uses
- 14. Surface water is of good chemical quality but may be unsafe due to precence of bacteria while groundwater usually has low bacteria counts but may contain high total dissolved solids, fluoride, arsenic, chloride, sodium and iron.
- 15. The average percapita water usage in tourism establishments is 205 litres/day for permanent lodges, camps and 12-63 litres/day for mobile land excursions and 77-188 litres/day for houseboats.
- 16. Ngamiland has the largest population without any sanitation services with 76% of residents of Ngamiland West having no toilets

- 17. Maun is the only village with a sewage system, with one in Gumare under construction. There are sewage systems for tourist lodges and camps as well as foe a few institutions.
- 18. There is only one sanitary landfill located in Maun and nine other gazetted dumping sites in Ngamiland.
- 19. There is concern of water pollution from septic tanks (whose soakaways may sometimes be very close to the river), sewage systems with poor effluent and dumping sites.

1. INTRODUCTION

The climate of Botswana may be described as semi-arid to arid. The country is largely flat and surrounded by plateaus of Zambia to the north, Zimbabwe to the northeast, South Africa to the south and southeast and Namibia to the west. As a result of this physiography, there are no prominent barriers to the flow of moist air and orographic influences on the formation of clouds and precipitation are virtually non-existent (NWMPR, 2006, Vol 1, 2006). There is a northeast-southwest gradation of mean annual rainfall from Kasane (645.1 mm) through Maun (452.4 mm and Tsane (346.3 mm) to Tsabong (289.7 mm) and Bokspits (170.9 mm). There is also a south-north gradation along the eastern flank of the country starting from Gaborone (529.6 mm) to Mahalapye (457.7 mm) and Francistown (469.5 mm) and Nata (432.5 mm). The mean monthly maximum temperature ranges from 29.2 °C to 37°C in summer, and 19.8 °C to 28.9°C in winter. Mean monthly minimum temperatures range from 16.2 to 20 in summer and -6 to 13.6 in winter (NWMPR 2006, Vol 3).

The low rainfall and high rates of potential evapotranspiration in Botswana combined with its very flat topography results in low rates of surface runoff and low rates of groundwater recharge. The only part of the country that has measurable runoff is the area lying within the Limpopo basin in the east and a small segment draining into the Makgadikgadi Pans from the east via Nata, Motsetse, Mosope and Lephashe Rivers (viol 1). In the north, the Okavango River enters Botswana at Mohembo with a mean discharge of about 350 m³/s, but largely dissipates itself in the Okavango Delta. The outflow from the Delta is only 4% of the inflow. The Zambezi has a large mean annual flow of 1088 m³/s (<u>http://en.wikipedia.org/wiki/Victoria_Falls#cite_note-WW-1</u>).

All the rivers in Botswana except the Okavango and the Chobe/Zambezi are ephemeral hence groundwater is a vital resource. Most of the areas of the country rely on it for water supply needs. However, groundwater is a finite resource and subject to pollution and groundwater mining, hence there is need to protect it.

In Botswana, water responsibilities are distributed between seven different institutions (Table 1). For example, the ministry of Minerals, Energy and Water Recourses is responsible for development of water policies; water allocation, water resource assessment, and also for supplying water to 17 major villages whereas District Councils are responsible for provision of water to all villages not supplied by the Ministry of Minerals, Energy and Water Resources.

Table 1. List of organisations and their water portfolios for Botswana (source: Kalaote, 2006)

Organisation	Portfolio
Ministry of Minerals, Energy and Water	Water policy, water allocation, Water Resources
Resources	assessment, water authority for 17 major villages ¹
Ministry of Local Government (District	Provision of water at local level
Councils)	
Ministry of Agriculture	Agricultural Water Development

Ministry Of Health	Ensure purity of water
Water Utilities Corporation (WUC)	Water Authority for Gaborone, Lobatse, Salebi
	Phikwe, Francistown, Jwaneng
DEBSWANA	Water supply to Orapa, Lethlakane and Damtshaa
	mines
Botswana Power Corporation	Water supply to Morupule mine

¹There are plans that WUC will take over the function of supplying water to major villages from the Ministry of Minerals, Energy and Water Resources.

The Okavango River Basin (ORB) remains one of the least human impacted basins on the African continent. Mounting socio-economic pressures in the riparian countries; Angola, Botswana and Namibia, threaten to change its present character. The Permanent Okavango River Basin Water Commission OKAKOM) therefore solicited funds from the three governments and the Global Environment Facility (GEF) and

initiated the Environmental Protection and Sustainable Management of the Okavango River Basin (EPSMO The long-term objective of the EPSMO Project is to achieve global environmental benefits through concerted management of the naturally integrated land and water resources of the Okavango River Basin. The specific objectives of the project are to:

- Enhance the depth, accuracy, and accessibility of the existing knowledge base of basin characteristics and conditions and identify the principal threats to the trans-boundary water resources of the Okavango River Basin through a Trans-boundary Diagnostic Analysis (TDA);
- b. Develop and implement, through a structured process, a sustainable and cost-effective program of policy, legal and institutional reforms and investments to mitigate the identified threats to the basin's linked land and water systems through the Strategic Action Program (SAP); and,
- c. Assist the three riparian nations (Angola, Botswana and Namibia) in their efforts to improve their capacity to collectively manage the basin.

The SAP will include baseline and additional actions to address priority trans-boundary issues and provide a monitoring and evaluation tool for implementation. It will also recommend the development and testing of a set of institutional mechanisms and implementation methodologies, including pilot demonstrations that explicitly link regional, national and local initiatives in land and water management. Additionally, it will involve preparation of a basin-wide framework in which trans-boundary priorities can be addressed and project interventions monitored.

The TDA will inform and guide the development of the SAP and will be a platform where transboundary externalities can be examined and resolved. The TDA will underpin the SAP design and indicate monitoring and reporting criteria for SAP implementation. Most importantly, the process of completing the TDA will inform policies and initiatives to be launched in preparation for SAP implementation. This report is part of the TDA with focus on irrigation.

The terms of reference for this work are:

- a. Assess requirements (quality, quantity, timing) of existing and planned formal water supply schemes
- b. Assess requirements (quality, quantity, timing) of informal household direct use of river water for the Botswana portion of the ORB.
- c. Assess current and projected changes in sanitation services in the Botswana portion of the ORB.

2. METHODOLOGY

Information was collected from a knowledge gathering workshop, discussions with Government Officers and the literature.

2.1 Workshop

A knowledge gathering workshop was conducted on $24^{th} - 25^{th}$ February 2009. The participants had been asked before hand to prepare information on water issues (and the other TDA areas). Preliminary information was therefore obtained during the workshop. In addition to the information, participants also provided input as to what they expected to be included in this report. A second workshop was held from 15 to 16 July 2009 when feedback was provided to stakeholders and additional input sought.

2.2 Discussions with Government Officers

Additional information was obtained by visits to the Department of Water Affairs and District Council Offices in Maun.

2.3 Literature

Secondary data was sourced from the offices or libraries. Most of the information in this report is derived from various volumes of the National Water Master Plan Review Volume (NWMPR) and of the National Master Plan for Wastewater and Sanitation (NMPWWS). Additional sources are indicated in the text.

3. WATER DEMAND FOR BOTSWANA

The water demand for Botswana for urban, rural water supply, agriculture, wildlife and livestock and environment is discussed below.

3.1 Urban Water Demand

The water demand for urban Botswana for 2004/2005 is given in Figure 1 Based on NWMPR 2006 Vol 5. A total of 125,200 million litres were consumed with domestic demand accounting for the highest demand (33%). Also of importance is that unaccounted for water (UFW) account for 20% of the water demand. MWMPR 2006 vol 5 contends that a conservative estimate of UFW in Botswana lies between 40% and 50%. The Department of water affairs estimated average losses at 27% with a range of 6% at Lethlakane to 48% in Kanye, Ramotswa and Maun (NMMPR 2006 Vol 5). The UFW for Maun has been reduced to 8-14% (Tshere, personal communication).

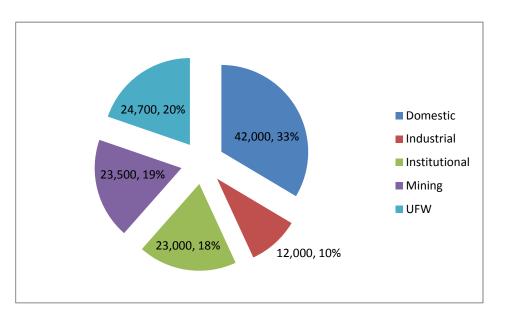


Figure 1. Urban water demand for Botswana in 2004/2005 (From NWMPR 2006 Vol. 6)

3.2 Rural Demand

The source for rural water supply has traditionally been groundwater extracted from District Council or government boreholes. Figure 2 shows the distribution of known aquifers in the country, with their estimated yields. It can be noted that the most of the aquifers lie in the South to East corridor between Lobatse/Kanye and Francistown.

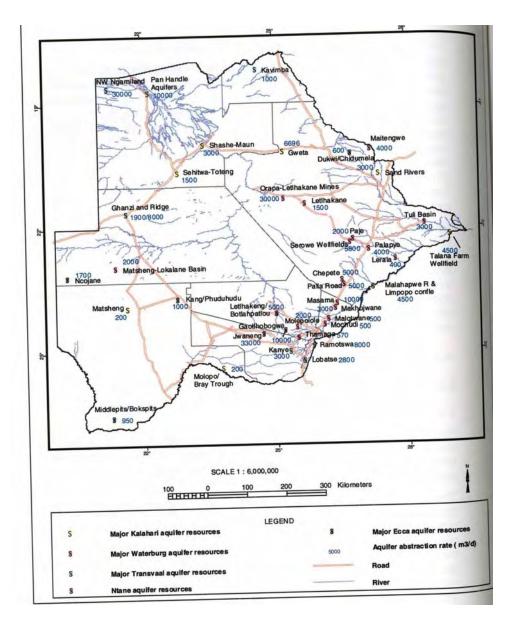


Figure 2. Major groundwater resources of Botswana (From NWMPR 2006 Vol. 1).

Figure 3 shows the abstraction rates of Kalahari aquifers of the country. The abstraction patterns differ from the distribution of groundwater resources in that it is not concentrated in the South-East corridor between Lobatse/Kanye and Francistown. Table 2 shows the regional water demand that was projected for 2005 (NWMPR 2006 Vol 6). The south and south east regions have the highest demand at about 29,000 million litres each, followed by the northern and then the western regions.

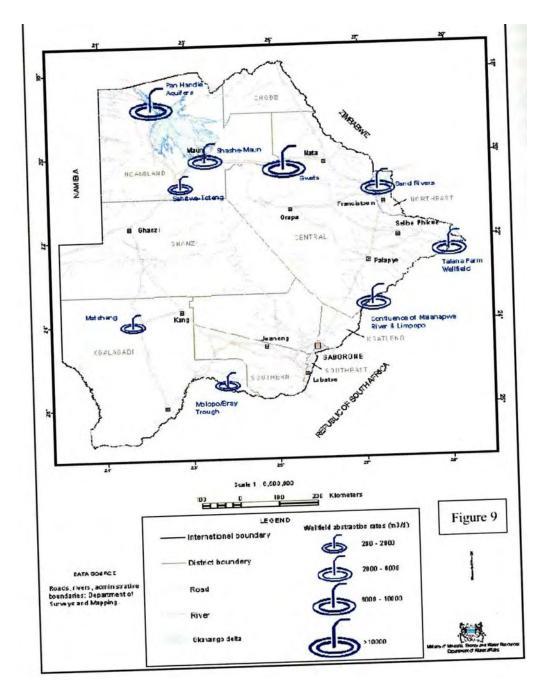


Figure 3. Major aquifer resources and abstraction rates (From: NWMPR: Vol. 4).

Region	Water	demand
	(million litre	es)
Eastern		29,000
South East		28,500
Western		1,700
Northern		4,100
Total		63,300

Table 2. Regional rural water demand for 2005

3.3 Water demand for Agriculture

The projected water demand for irrigated agriculture under when NAMPAADD (see accompanying report: irrigation) is fully implemented is 53,000 million litres/year of which 11,500 million litres/year is expected to be from groundwater.

3.4 Livestock

Water demand for livestock has not been quantified. However, the NDP 8 projected that of the total water demand of 193,400 million litres for the year 2000, 23% was for livestock. This would give a water demand for livestock of 44,500 million litres for the year 2000.

3.5 Wildlife water consumption

Wildlife and wildlife based tourism are renewable resources and if wisely used and sustainably managed, will continue making an increasingly important contribution to the Botswana economy. Tourism is currently the second biggest export sector in Botswana following mining. Elephant dominate the wild water dependent animals with an appreciable number of buffalo, impala, hartebeest, wilderbeest, zebra and kudu. The NWMPR 2006 Vol 9 gives a herbivore water demand for 2001 of 10,000 million litres. Other workers have given demand of between 6,000-8,000 million litres/year (see references in NWMPR 2006 vol 9).

3.6 Environmental water requirements for the environment

While there is no doubt that the environment is a consumer of water, there is difficulty in determining the magnitude of this demand. Various environmental methods, generally called environments flow requirements (EFR) have been used for this. Environmental flows are defined as the stream flow necessary to sustain habitats, encourage spawning and the migration of fauna species to previously unpopulated habitats, enable the processes upon which succession and biodiversity depend, and maintain the desired nutrient structure within lakes, streams wetlands and riparian areas when ecosystems are subjected to flow regulation and competition from multiple water users. For Botswana, EFR assessments for some rivers are given in Table 3. (NWMPR 2006 Vol 9). For the three rivers - Nata, Thume and Shashe, flows of 5 to 6 m³/s are needed (during high flows) in order to ensure that the environmental needs of

the rivers are met. For the Okavango, flows of 390 m³/s are required, mainly to sustain the Okavango Delta ecosystem. Another EFR study for the region is currently underway.

RIVER	EFR (m ³ /s)	METHOD
Nata	5	Flow exceeded 50% of the time
Thune	5.5	Q ₈₀
Shashe, downstream of	6.0	Q ₈₀
Dikgathong Dam		
Okavango River	390	Q ₂₀

Table 3. Environmental Flow Requirements of 4 rivers (NWMPR 2006, Vol 9)

4. THE OKAVANGO DELTA AREA

4.1 Existing domestic water schemes

There are four general suppliers of water in the Okavango Delta area: (i) North West District Council for all villages other than Maun (ii) the Department of Water Affairs (DWA)for Maun (iii) tour operators for tourism facilities in areas that are not supplied by NWDC or DWA and (iv) individuals in most ungazetted settlements. The existing water supply schemes for the Okavango Delta region, with the exception of tour operators and ungazetted areas are given in Table 4. Of the total daily demand of 2709 m³/day for the villages supplied by the NWDC, 1485 m³/day (55%) is from boreholes. The remaining 54% is from surface water with uptake at the panhandle (Mohembo East, Shakawe, Sepoa 1 and Sepopa 2).

Of a total of 12,792 m³/day of the daily output for Maun, only 960 m³/day (7.5%) is from surface water, and this is only utilised when there is flow in the Thamalakane as the river sometimes dries out. Groundwater is therefore a major source of water for the region, especially Maun. Of the 15,501 m³/day total daily output for NWDC and DWA , 13,317 m³/day (85.9%) is from groundwater.

Daily output Village Source Daily Remarks demand (m^3/d) (m^{3}/d) SUPPLIED BY NWDC Matlapana, Disaneng, Borehole 100 415 Sexaxa, Matsaudi Shorobe Borehole 50 80 Sankovo Borehole 22 25 23 Chanoga Borehole 75 23 Phuduhudu Borehole 80 Sehitwa, Bothatogo, Borehole 620 250 Many Bodibeng, Toteng, breakdowns. Legotwane, Kareng desalination Makakung, Semboyo desalination Borehole 65 164 Borehole Tsau 100 238 Mababe Borehole 12 100 30 Somelo Borehole 66 Poor access. aeration for iron removal Komana Borehole 13 58 Makalamabedi Borehole 21 180 Desalination Borelole 100 **Boreholes** Nokaneng, Habu, 87 curved in,

Table 4. Domestic water demand and production for areas supplied by the North West District Council (Data from NWDC) and Department of Water Affairs (data provided by DWA, Maun)

				supplemented
				by bowsing,
				Iron problems
Qooshe	Borehole	11	15	Borehole dry,
				bowsing
Qangwa	Borehole	20	18	Supply at risk,
				pumping long
				hours
Tubu	Borehole	24	65	
Etsha 13	Surface	110	185	
Sepopa, Mokwana,	Borehole	170	410	
Ikoga, Tamacha				
Ngarange	Borehole	48	180	
Seronga, Gunitsoga	Borehole	155	178	
Gudigwa	Borehole	27	100	
Gani	Borehole	27	87	
Beetsha	Borehole	41	57	
Mogotho	Borehole	15	45	
Chukumuchu	Borehole	15	27	
Gumare, Etsha 1-12	Surface	600	700	
Xakao, Mohembo East,	Surface	210	400	
Kauxwi, Jejeda,				
Sechenje,				
Sekondomboro,				
Kaputura, Goa, Tobera				
Xaixai	Borehole	13	45	
Shakawe, Okusi,	Surface	350	400	
Nxomokao, Nxamasere,				
Mohembo West, Xaoga,				
Shaikarawe	a (10		
Nxaunxau	Surface	18	50	<u> </u>
Eretsha	Surface	25	15	Bowsing
Kajaji	Surface	21	0	Safe water not
				provided-to be
				bowsed and
				then
				connected
			R AFFAIRS-MAU	
Maun	Boreholes		0.704	Surface water
	Shashe		2,784	only 2% of the
	Sexaxa		1,608 1,008	total. High salinity of
	Kunyere Tsutsubega		6,432	•
	isuisubeya		0,432	groundwater,
	Surface			poor groundwater
	Junace	l		giounuwalei

	Wenela	960	quality. Surface water only available when there is flow in the Thamalakane River
Total		15,501	

4.2 Future Domestic water schemes

- In Maun, the Maun Groundwater Development Project Phase 2 recommended the decommissioning of the Shashe welfied (currently under use) due to salinisation and a total of 30 boreholes to be developed at Matsibe, Kunyere and Gomoti with a total abstraction rate of 26,944 m³/day against a projected demand of 22,222 m³/day.
- The plans for the NWDC include:
 - connection of Kajaja 1 to the Shakawe treatment. Approximately 50 m³/day is expected to be consumed. This is expected to be completed by the end of this year, 2009.
 - Development of the Khwai water supply scheme to supply approximately 30 m³/day. This is expected to be completed by the end of this year, 2009
 - o Construction of an aeration plant at Komana
 - Construction of an aeration plant at Chanoga
 - Rehabilitation of the Shakawe treatment plant
 - Groundwater Investigation, Boreholes Drilling, Design & Construction of Water Supply at Ditshiping, to supply an estimated 30 m³/day
 - Construction of aeration plant and rehabilitation and borehole connection at Nokaneng/Habu
 - Interconnection of Seronga, Teekae, Gunitsonga, Ndorotsha, Eretsha, Beetsha and Gudigwa to the Sepopa treatment plant. The water demand is estimated at 1357m³/day and the project has been designed to provide 1000m³/day.

4.3 Total present and future water abstractions

The total water abstraction was estimated during the Okavango Delta Management Planning process (ODMP 2006).

4.3.1 Surface water

Data for total surface water abstractions from the Okavango Delta based on permits issued by the DWA is given in Table 5. These abstractions are for domestic water supply, livestock, game, small scale irrigation and construction. The total permitted abstraction (2005) from the Delta is 46,540 m³/day or 17 Mm³/annum. This is 0.22% of the average inflows from 1987 to 2002. Future projected abstractions based on increase in population and rates of consumption is 25Mm3/annum or 0.32 % of the average inflow. It should be noted that large abstractions are from Maun which is downstream of the Okavango Delta.

Table 5. Surface water abstraction from the Okavango Delta

	Abstraction (M ³ /day)		
River	2005	2025	

Okavango	6,285	9,107
Thaoge	1,475	2,140
Boro	1,483	2,710
Maunachira	275	399
Khwai	148	215
Thamalakane	26,571	38,553
Nhabe	5,100	7,400
Boteti	5,203	7,549
Total	46,540	68,074

4.3.2 Groundwater

Data for surface water abstraction was also given in ODMP (2006) (Table 6). A total of 16,448 M^3 /day was abstracted in 2005 and a projected 44,377 m^3 /day in 2025. The 2025 figure includes 6,800 m3/day of saline water expected to be used by DML copper project near Toteng for processing copper ore (Discovery Metals Limited, personal communication). The current and future groundwater abstraction sites are shown in Figures 4 and 5.

Table 6. Groundwater abstractions in the Okavango Delta area

	Abstractio	n (M ³ /day
Location	2005	2025
Seronga	210	287
Ngarange	137	185
Etsha 6	387	522
Etsha 13	136	184
Nokaneng	212	286
Gumare	515	696
Sehitwa	230	310
Tsao	191	257
Toteng	234	316
DMC mine	-	6,800
Shorobe	230	310
Tsutsubega	1,643	4,026
Shashe	4,654	-
Gomoti	7,666	10,066
Kunyere	-	12,079
Matsibe	-	8,053
Total	16,446	44,371

Figure 4. Location of present groundwater abstractions (ODMP 2006)

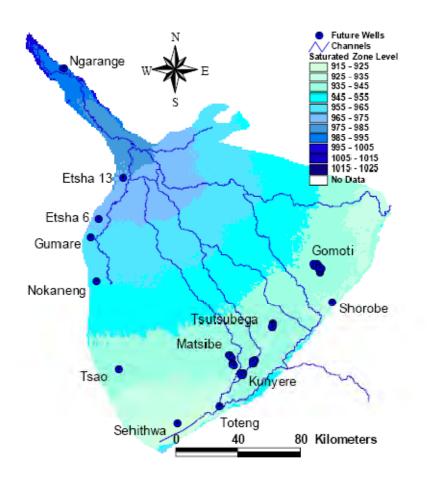


Figure 5. Location of future groundwater abstractions (ODMP 2006)

4.3 Direct Household Use

The Okavango Delta has a population of 2,688 people (CSO 2001). Settlement water consumption is not accurately known. When standpipe consumptions based on the Botswana National Wastewater and Sanitation Planning design for public standpipe (35 l/c/d) is used, this would give a daily consumption of 94,080 litres per day.

4.4 Water usage by tour operators in the Okavango Delta

A study of 40 permanent lodges and camps showed that 60% of these establishments obtained their water requirements directly from the Delta system; 10% from boreholes and 30% from hand dug wells (Aqualogic 2008). They found the average per capita water usage for permanent tourist lodges/camps to be 205 litres/day, with a range of 58 – 352 litres per capita per day. For mobile safaris, water usage ranged from 12-63 litres/capita/day for on land excursions and 77-188 litres/capita per day for house boats (Aqualogic 2008).

4.4. Surface Water Quality

Generally, the surface water of the Okavango Delta area is of good quality, having low dissolved solids and bacteria. Tables 7 shows the average results from HOORC's water quality monitoring programme on water quality for main channels at Mohembo, Sepopa, the Boro settlement and Maun. Generally, the pH is near neutral and electrical conductivity very low-ranging from 38 μ S/cm in the panhandle to 127 μ S/cm in Maun. Metals are generally low with lead, nickel, cobalt and cadmium less than the detection linit of the instrument used; Na (2.0 mg/l-9.4 mg/l); K (1.7mg/l-4.7mg/l); Mg (0.8 mg/l-3.3mg/l); Fe (0.08 mg/l-0.14 mg/l) and Mn (up to 0.04 mg/l). Dissolved oxygen is highest at Mohembo (6.77) and is lower downstream, probably as a result of high dissolved organic matter, which uses up oxygen upon decomposition, in downstream waters. Total nitrogen was in the range 0.23 mg/l to 0.73 mg/l; TSS (4-12 mg/l). The other parameters e.g. anions are also low. Generally, there is an increase in concentration of the water quality parameters from Mohembo to the downstream village of Maun.

Figure 6 shows the faecal coliform counts for the surface water in panhandle between Mohwmbo and Shakawe (unpublished HOORC monitoring data). The results show that the water is contaminated by bacteria and is therefore not fit for direct human consumption. Microbiological water quality was determined for the lower Delta with *Faecal coliform* (range 0 – 48 counts/ 100ml) and *Faecal streptococci* (40 – 260 counts/100ml) being lower than the panhandle (Masamba and Mazvimavi 2008). This could be attributed to the filtering effect of the Delta. However, even in the lower Delta, the water is not suitable for direct human consumption.

4.5 Groundwater

Groundwater quality is routinely monitored by the DWA around Maun for water quality. The NWDC also monitors water quality for its boreholes while the Maun groundwater project also determined the water quality in the Boro, upper Thamalakane , Kunyere, Gomoti and Matsibe welfields when investigations for extending the Maun water supply were conducted. Unlike surface water, groundwater tends to have better microbiological quality but poorer chemical characteristics. Table 8 gives the water quality of the groundwater quality of some boreholes in the Okavango Delta area. While some of the boreholes meet the Botswana Bureau of Standards drinking water specifications, others do not. Parameters that are sometimes exceeded include electrical conductivity, chloride, arsenic, sodium and iron. In some cases, the water is treated e.g. at Makalamabedi (desalination) and at for high electrical conductivity (total dissolved solids), Somelo for iron (See Table 6).

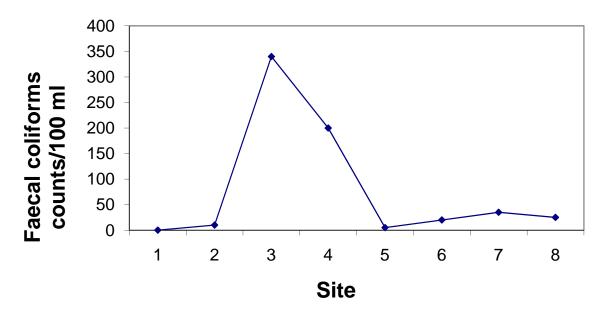


Figure 6. Faecal coliform counts for eight sites between Mohembo and downstream of Shakawe (HOORC monitoring data)

Table 7. Concentrations (mg/l unless otherwise specified) of various parameters in surface water of the Okavango Delta.	
pH is unitless.	

		EC											
	рН	(us/cm)	DO	Turb	CO ₃	HCO ₃	CI	SO_4	NO_3	PO_4	Na	Κ	Ca
Mohembo	6.84	38	6.77	3.92	0.0	44	0.58	1.34	0.02	0.01	2.0	1.7	3.0
Sepopa	6.74	39	3.45	2.29	0.0	46	0.41	0.44	0.10	<0.01	2.2	1.9	3.7
Boro	6.70	119	5.82	0.56	0.0	125	0.95	0.08	0.02	<0.01	9.0	4.5	9.8
Maun	6.94	127	3.48	9.20	0.0	129	1.00	0.16	0.19	<0.01	9.4	4.7	9.9

Table 7 Continued

	Mg	Fe	Mn	Cd, Pb, Ni, Co	ΤN	TSS	DOC
Mohembo	0.8	0.14	0.04	<0.01	0.23	6.4	4.2
Sepopa	1.0	0.13	0.01	<0.01	0.32	4.4	5.2
Boro	3.1	0.10	<0.01	<0.01	0.64	4.3	10.8
Maun	3.3	0.08	<0.01	<0.01	0.73	5.0	11.8

Borehole	Location	Year	pН	EC	As	DOC	HCO ₃	CO ₃	F	CI	K	Mg	Fe	Na
		sampled	-	(µS/cm)								_		
BH7188	Shashe	2005	8.24	1850	0.0027	4.1	1104	23	0.87	263	13	1.4	<0.01	
BH8786	Shashe	2005	7.64	4140	0.0094	3.1	769	0	0.72	693	20		<0.01	
BH9250	Tubu	2005	5.65	291	0.0041	25	29	0	0.24	3	6.4	0.2	7.09	
BH8022	Nokaneng	2005	6.65	1053	0.0064	6.1	294	0	0.51	4	12	19	<0.01	
BH9029	Makalamabedi	2005	10.5	7460	0.014	14.7	1699	642	16.3	1269	33	0.1	0.08	
	Makalamabedi	2005	10.1	572	0.0017	2.4	61	22	0.69	94	2.0	0.1	<0.01	
	after treatment													
BH9834	Boro	2002	6.6	160	0.035				0.96	80	14	0.8	0.22	392
BH9826	Boro	2002	7.9	246					0.14	17	8.0	10.0	0.11	10
BH9593	Upper	2002	66	130					0.10	1.7	6.4	1.9	8.2	14
	Thamalakane													
BH9595	Upper	2002	8.6	2950					0.5	622	15	3.9	1.9	10
	Thamalakane													
BH9904	Gomoti	2002	8.3	1480	0.09				1.3	64	5.2	0.4	0.08	370
BH9900	Gomoti	2002	8.2	1480	0.36				2.20	167	2.8	0.2	0.06	339
BH9707	Kunyere	2002	7.3	2800	0.010				0.32	494	19	13	0.31	533
BH9788	Kunyere	2002	8.1	1140	0.31				2.41	34	5.3	0.40	0.29	289

Table 8. Groundwater quality. All concentrations in mg/l unless otherwise specified. pH is unitless (From Maun Water Resources Consultants 2004, DWA, NWDC and HOORC data).

5.0 ON SITE SANITATION IN BOTSWANA

The 2001 census indicated that by the World Health Organisation (WHO) definition of adequate sanitation, 77% of all households in Botswana have access to adequate sanitation. Urban areas have 95% sanitation level whereas rural areas have 51% (Botswana National Master Plan for Wastewater and Sanitation (NMPWWS) 2003, Vol. 1). These are above the average for Africa which stands at 81% for urban areas and 41% for rural areas (Table 9). Of importance is the fact that 23% of the population do not have any sanitation service -i.e. they use the bush. Botswana has defined the minimum level of sanitation to be the ventilated improved pit latrine (VIP) for houses which are not serviced by individual water connections. This implies that the pit latrine is not an appropriate sanitation option for the people of Botswana. Using this definition of adequate sanitation service, only 39% of the households have adequate sanitation service, 53% in urban areas and 18% in rural areas. Figure 7 shows a schematic indication of the sanitation for the whole country. It can be noted that Ngamiland has the worst sanitation in the country. Ngamiland only has one main wastewater treatment plant located in Maun (Figure 8). Smaller treatment plants, mainly serving institutions will be discussed in subsequent sections. Maun is also the only locality that has an engineered landfill.

Table 9. Comparison of adequacy of sanitation services in Botswana (NMPWWS 2003)	,
Vol. 1)	

%	African Continent (WHO definition)	Botswana (WHO definition)	Botswana (GOB definition)
Urban	81	95	53
Rural	41	51	18
Total	55	77	39

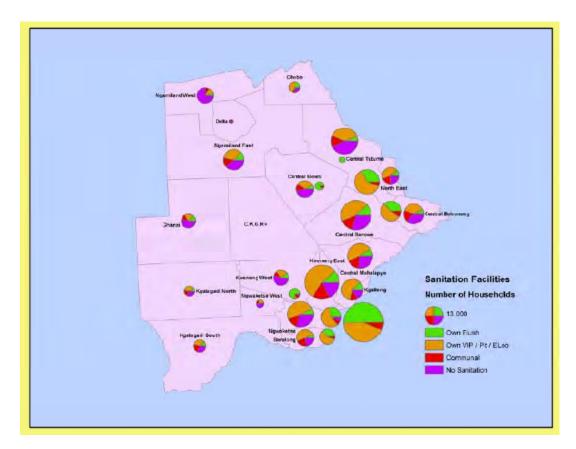


Figure 7. On site sanitation in Botswana (NMPWWS 2003, Vol. 1)

The 2001 census provides information on sewerage coverage for Botswana. This is indicated in Table 10. The national coverage is at 12.5%; with urban centres at 22% and 5% for rural areas respectively. Of the 64 major wastewater treatment plants in the country, 45 (70%) are pond type systems; the remaining 19 (30%) are made of 3 activated sludge, 1 trickling filter, 4 rotating biological contactors(RBC's), and 11 wetland systems. Their location is given in Figure 8.

Table 10.	Sewarage	coverage	of Botswana
-----------	----------	----------	-------------

%	Sewer	Other Sanitation	Total
Urban	22	73	95
Rural	5	44	51
National Total	12.5	64.9	77.4

The effluent quality of the various sewage systems is given in Figure 8. The pond systems were found to be only 10% compliant with the Department of Water Affairs (DWA) effluent guideline. The RBC's achieved a 90% compliance.

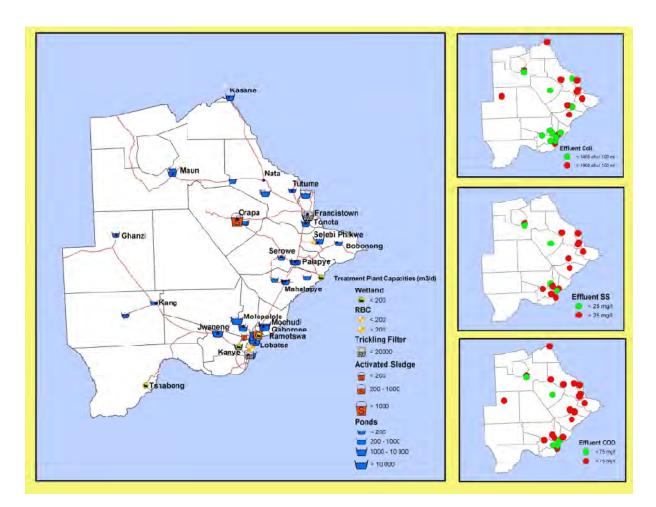


Figure 8. Main wastewater treatment plants in Botswana

6.0 SANITATION IN NGAMILAND

It can be noted that Ngamiland has the largest proportion of people without any sanitation services. Table 10 shows the percent households that own different sanitation services compared to the national average (NMPWWS 2003, Vol. 3). It can be noted that Ngamiland, is on average worse than the national average in the following cases: own flush, own VIP, own pit latrine, communal VIP, communal pit latrine, and no toilets at all; and has marginally better percentages only for own environ-loo (0.7 nationally against 1.0 in Ngamiland), communal flush (0.8 nationally against 1.7 for Ngamiland), and neighbours toilet (5.9 nationally against 6.0 in Ngamiland). Of particular concern is the fact that 53.7% of Ngamiland residents do not have a toilet at all. The problem is even exemplified when it is noted that 76% of the residents of Ngamiland West (Gumare) do not have any toilets.

Ngamiland only has one main sewage system in Maun. This consists of a vacuum tanker discharge bay, manually raked screens, degritting canals, anaerobic ponds, facultative ponds and aerobic ponds. The treated effluent is disposed of on an irrigation area, but no commercial agriculture has been established. The inflow of the plant is 400 m³/day (NMPWWS 2003 Vol 6). The effluent quality of the treatment plant does not comply with national disposal standards (NMPWWS 2003, Vol. 6; Motsholabatho 2008). Other wastewater systems include a constructed wetland at Thuso rehabilitation Centre (10 m³/day) and a pond system at Boro Prison designed for 100 m³/day. The new Maun Hospital has also commissioned a wastewater treatment plant. A constructed wetland system is under construction for the Botswana Defence Force Camp at Shakawe, and another wastewater treatment plant is about to be commissioned at Gumare. Wastewater systems used in the Okavango Delta have been reviewed and while others had satisfactory performance, there were some which were poor (Aqualogic 2008). The projected wastewater generation rates for the ODRS are given in Table 12 (Aqualogic 2006).

It should be noted that sewage systems cover only a small fraction of the households, with most households relying on toilets and septic tanks. The danger of these has been shown this year, 2009, when some villages and settlements were flooded. Some soak aways were also covered by water.

	Own flush	Own VIP	Own pit latrine	Own E-L	Comm. flush	Comm. VIP	Comm. pit latrine	Neig. toilet	None	Not reported
Nation	20.7	18.5	25.1	0.7	0.8	0.8	4.9	5.9	22.5	0.1
Average Ngamiland	9.3	8.0	15.9	1.0	1.7	0.6	3.8	6.0	53.7	0.1
Ngamiland Delta	2.7	0.2	0.4	0.0	36	0.2	7.6	0.2	52.5	0.0
Ngamiland East	12.7	10.6	22.5	0.4	1.1	0.5	4.5	8.3	39.2	0.1
Ngamiland West	4.3	4.4	6.5	2.0	0.9	0.8	2.4	2.7	76.0	0.1

 Table 11. On site sanitation for Botswana and Ngamiland. Comm.-Communal; Neig.-Neighbour; E-L enviro-Loo

Wastewater sources	Year							
	2006	2007	2008	2009	2010	2011		
On-site systems (projected for ODRS)	1832	1850	1869	1888	1906	1925		
Generation rate (m ³ /day)	725	733	740	748	755	762		
Projected wastewater from off-site	308	337	371	408	662	716		
systems (Maun) (m ³ /day)								
Projected wastewater from off-site	21	21	21	21	21	21		
systems (Gumare) (m ³ /day)								
% collected by on-site systems	69	67	65	64	52	51		
Total (m³/day)	1054	1091	1132	1177	1438	1499		

Table 12. Progected wastewater generation rates	s, 2006-2011 (Aqualogic 2006)
---	-------------------------------

It was estimated that the solid waste generated in the Okavango Delta area is 0.28 kg/person/day (Aqualogic 2006). Based on this, the total solid waste generated in the Okavango Delta Ramsar Site was estimated at 18,305 tonnes/year. There is only one sanitary landfill in Maun and "dumping" sites nine other villages: Tsau, Sehitwa, Toteng, Gumare, Nokaneng, Gumare, Etsha 6, Sepopa and Nxamasere. Concerns of groundwater pollution by the use of these dumping sites has been raised (Aqualogic 2006). More engineered landfill sites should be constructed in other villages located strategically around the Okavango delta Ramsar site.

7.0 CONCLUSIONS

Botswana is a semi-arid to arid country that relies heavily on groundwater. The two perennial rivers-Okavango and Chobe.Zambezi are subject to international agreements that have not been finalized. There are many institutions that are currently responsible for supplying water. The government is streamlining this by removing the water supply function from the Department of Water Affairs to the Water Utilities Corporation. This may reduce bottleneck that have existed in the water supply sector. The current and future water abstractions are expected to have only minor impact on the Okavango Delta system. Direct water draw from the river is considered to be the insignificant compared to other uses.

Of great concern for the TDA process are (i) sanitation service which are poor in Ngamiland (e.g. 54% or all residents in Ngamiland do not have a toilet) (ii) poor solid waste disposal as there is only one sanitary landfill located in Maun. Other villages and locations use gazette or ungazetted dumping sites. This has potential for groundwater pollution (iii) the main wastewater treatment plant in Maun produces effluent of poor quality. This has potential for contaminating groundwater. (iv) Use of septic tanks close to the main river/ Delta has potential to contaminate the river water.

8.0 **RECOMMENDATIONS**

The following recommendations can be made:

- The environmental flow requirements for the Botswana part of the ORB needs to be evaluated to ensure that water uptake from outside and within Botswana would allow for water needs at a level that is predetermined.
- The projected water abstractions in the Botswana part of the ORB can be implemented without affecting the integrity of the Botswana part of the ORB
- Upstream activities that may result in pollution should be monitored and steps put in place to ensure that the water quality is not degraded
- For the Botswana part of the ORB, the following should be done:
 - Appropriate solid waste disposal facilities should be constructed to that dumping sites which pose a threat to both ground and surface water are phased out
 - Wastewater treatment system efficiency should be improved so that danger posed from this source to water resources is reduced
 - Houses, especially those with pit latrines and septic tanks should not be built close to the river or in areas that are prone to flooding

REFERENCES

Aqualogic 2006. Management of solid and liquid waste in the Okavango Delta Ramsar Site, Report submitted to the North West District Council and the Okavango Delta Management Plan Secretariat.

Aqualogic 2008. Consultancy for the assessment of liquid waste systems for tourism establishments in the Okavango delta and transportation, handling and storage of hazardous substances in the Okavango Delta. Report submitted to the BIOKAVANGO Project.

Central Statistical Office (CSO) 2002. Population of towns, villages and associated localities in August 2001; Government Printer, Gaborone.

Kalaote, K. 2006. Overview of the water sector: supply and demand issues. Paper presented at the Botswana Resource centre conference, Gaborone International Conference Centre, 13 Jul. 2006.

Masamba, W.R.L. and Mazvimavi, D. 2008. Impact on water quality of land uses along Thamalakane-Boteti River: an outlet of the Okavango Delta. Physics and Chemistry of the Earth 33, 687-694.

Motsholabatho, S.S. 2008. Determination of potential environmental impacts of sewage the Maun Sewage Treatment Plant. Report submitted to the University of Botswana.

National Water Master Plan Review (NWMPR) 2006. Government of Botswana

Okavango Delta Management Plan 2006. Hydrology and water resources: Analysis of water resources scenarios.

Water Resources Consultants 2004. Maun Groundwater Development Project 2. Report submitted to Department of Water Affairs.

The Okavango River Basin Transboundary Diagnostic Analysis Technical Reports

In 1994, the three riparian countries of the Okavango River Basin – Angola, Botswana and Namibia – agreed to plan for collaborative management of the natural resources of the Okavango, forming the Permanent Okavango River Basin Water Commission (OKACOM). In 2003, with funding from the Global Environment Facility, OKACOM launched the Environmental Protection and Sustainable Management of the Okavango River Basin (EPSMO) Project to coordinate development and to anticipate and address threats to the river and the associated communities and environment. Implemented by the United Nations Development Program and executed by the United Nations Food and Agriculture Organization, the project produced the Transboundary Diagnostic Analysis to establish a base of available scientific evidence to guide future decision making. The study, created from inputs from multi-disciplinary teams in each country, with specialists in hydrology, hydraulics, channel form, water quality, vegetation, aquatic invertebrates, fish, birds, river-dependent terrestrial wildlife, resource economics and sociocultural issues, was coordinated and managed by a group of specialists from the southern African region in 2008 and 2009.

The following specialist technical reports were produced as part of this process and form substantive background content for the Okavango River Basin Transboundary Diagnostic Analysis

Final Study Reports	Reports integrating finding basin.	Reports integrating findings from all country and background reports, and covering the entire basin.			
Neporta	Aylward, B.	Economic Valuation of Basin Resources: Final Report to EPSMO Project of the UN Food & Agriculture Organization as an Input to the Okavango River Basin Transboundary Diagnostic Analysis			
	Barnes, J. et al.	Okavango River Basin Transboundary Diagnostic Analysis: Socio-Economic Assessment Final Report			
	King, J.M. and I C.A.	Brown, Okavango River Basin Environmental Flow Assessment Project Initiation Report (Report No: 01/2009)			
	King, J.M. and I C.A.	Brown, Okavango River Basin Environmental Flow Assessment EFA Process Report (Report No: 02/2009)			
	King, J.M. and I C.A.				
	Bethune, S. Ma D. and Quinting				
	Beuster, H.	Okavango River Basin Environmental Flow Assessment Hydrology Report: Data And Models(Report No: 05/2009)			
	Beuster, H.	Okavango River Basin Environmental Flow Assessment Scenario Report : Hydrology (Report No: 06/2009)			
	Jones, M.J.	The Groundwater Hydrology of The Okavango Basin (FAO Internal Report, April 2010)			
	King, J.M. and I C.A.	Brown, Okavango River Basin Environmental Flow Assessment Scenario Report: Ecological and Social Predictions (Volume 1 of 4)(Report No. 07/2009)			
	King, J.M. and I C.A.	Brown, Okavango River Basin Environmental Flow Assessment Scenario Report: Ecological and Social Predictions (Volume 2 of 4: Indicator results) (Report No. 07/2009)			
	King, J.M. and I C.A.	Brown, Okavango River Basin Environmental Flow Assessment Scenario Report: Ecological and Social Predictions: Climate Change Scenarios (Volume 3 of 4) (Report No. 07/2009)			
	King, J., Brown, Joubert, A.R. al Barnes, J.				
	King, J., Brown, and Barnes, J.	, C.A. Okavango River Basin Environmental Flow Assessment Projec Final Report (Report No: 08/2009)			
	Malzbender, D.				
	Vanderpost, C.	and Database and GIS design for an expanded Okavango Basin			

		Dhliwayo, M.	Information System (OBIS)
		Veríssimo, Luis	GIS Database for the Environment Protection and Sustainable Management of the Okavango River Basin Project
		Wolski, P.	Assessment of hydrological effects of climate change in the Okavango Basin
Country Reports Biophysical Series	Angola	Andrade e Sousa, Helder André de	Análise Diagnóstica Transfronteiriça da Bacia do Rio Okavango: Módulo do Caudal Ambiental: Relatório do Especialista: País: Angola: Disciplina: Sedimentologia & Geomorfologia
		Gomes, Amândio	Análise Diagnóstica Transfronteiriça da Bacia do Rio Okavango: Módulo do Caudal Ambiental: Relatório do Especialista: País: Angola: Disciplina: Vegetação
		Gomes, Amândio	Análise Técnica, Biofísica e Socio-Económica do Lado Angolano da Bacia Hidrográfica do Rio Cubango: Relatório Final:Vegetação da Parte Angolana da Bacia Hidrográfica Do Rio Cubango
		Livramento, Filomena	Análise Diagnóstica Transfronteiriça da Bacia do Rio Okavango: Módulo do Caudal Ambiental: Relatório do Especialista: País: Angola: Disciplina:Macroinvertebrados
		Miguel, Gabriel Luís	Análise Técnica, Biofísica E Sócio-Económica do Lado Angolano da Bacia Hidrográfica do Rio Cubango: Subsídio Para o Conhecimento Hidrogeológico Relatório de Hidrogeologia
		Morais, Miguel	Análise Diagnóstica Transfronteiriça da Bacia do Análise Rio Cubango (Okavango): Módulo da Avaliação do Caudal Ambiental: Relatório do Especialista País: Angola Disciplina: Ictiofauna
		Morais, Miguel	Análise Técnica, Biófisica e Sócio-Económica do Lado Angolano da Bacia Hidrográfica do Rio Cubango: Relatório Final: Peixes e Pesca Fluvial da Bacia do Okavango em Angola
		Pereira, Maria João	Qualidade da Água, no Lado Angolano da Bacia Hidrográfica do Rio Cubango
		Santos, Carmen Ivelize Van-Dúnem S. N.	Análise Diagnóstica Transfronteiriça da Bacia do Rio Okavango: Módulo do Caudal Ambiental: Relatório de Especialidade: Angola: Vida Selvagem
		Santos, Carmen Ivelize Van-Dúnem S.N.	Análise Diagnóstica Transfronteiriça da Bacia do Rio Okavango:Módulo Avaliação do Caudal Ambiental: Relatório de Especialidade: Angola: Aves
	Botswana	Bonyongo, M.C.	Okavango River Basin Technical Diagnostic Analysis: Environmental Flow Module: Specialist Report: Country: Botswana: Discipline: Wildlife
		Hancock, P.	Okavango River Basin Technical Diagnostic Analysis: Environmental Flow Module : Specialist Report: Country: Botswana: Discipline: Birds
		Mosepele, K.	Okavango River Basin Technical Diagnostic Analysis: Environmental Flow Module: Specialist Report: Country: Botswana: Discipline: Fish
		Mosepele, B. and Dallas, Helen	Okavango River Basin Technical Diagnostic Analysis: Environmental Flow Module: Specialist Report: Country: Botswana: Discipline: Aquatic Macro Invertebrates
	Namibia	Collin Christian & Associates CC	Okavango River Basin: Transboundary Diagnostic Analysis Project: Environmental Flow Assessment Module: Geomorphology
		Curtis, B.A.	Okavango River Basin Technical Diagnostic Analysis: Environmental Flow Module: Specialist Report Country: Namibia Discipline: Vegetation
		Bethune, S.	Environmental Protection and Sustainable Management of the Okavango River Basin (EPSMO): Transboundary Diagnostic Analysis: Basin Ecosystems Report
		Nakanwe, S.N.	Okavango River Basin Technical Diagnostic Analysis: Environmental Flow Module: Specialist Report: Country: Namibia: Discipline: Aquatic Macro Invertebrates
		Paxton, M.	Okavango River Basin Transboundary Diagnostic Analysis: Environmental Flow Module: Specialist Report:Country:Namibia: Discipline: Birds (Avifauna)

		Roberts, K.	Okavango River Basin Technical Diagnostic Analysis: Environmental Flow Module: Specialist Report: Country:
		Waal, B.V.	Namibia: Discipline: Wildlife Okavango River Basin Technical Diagnostic Analysis: Environmental Flow Module: Specialist Report: Country: Namibia:Discipline: Fish Life
Country Reports Socioeconomic Series	Angola	Gomes, Joaquim Duarte	Análise Técnica dos Aspectos Relacionados com o Potencial de Irrigação no Lado Angolano da Bacia Hidrográfica do Rio Cubango: Relatório Final
		Mendelsohn, .J. Pereira, Maria João	Land use in Kavango: Past, Present and Future Análise Diagnóstica Transfronteiriça da Bacia do Rio Okavango: Módulo do Caudal Ambiental: Relatório do Especialista: País: Angola: Disciplina: Qualidade da Água
		Saraiva, Rute et al.	Diagnóstico Transfronteiriço Bacia do Okavango: Análise Socioeconómica Angola
	Botswana	Chimbari, M. and Magole, Lapologang	Okavango River Basin Trans-Boundary Diagnostic Assessment (TDA): Botswana Component: Partial Report: Key Public Health Issues in the Okavango Basin, Botswana
		Magole, Lapologang	Transboundary Diagnostic Analysis of the Botswana Portion of the Okavango River Basin: Land Use Planning
		Magole, Lapologang	Transboundary Diagnostic Analysis (TDA) of the Botswana p Portion of the Okavango River Basin: Stakeholder Involvement in the ODMP and its Relevance to the TDA Process
		Masamba, W.R.	Transboundary Diagnostic Analysis of the Botswana Portion of the Okavango River Basin: Output 4: Water Supply and Sanitation
		Masamba,W.R.	Transboundary Diagnostic Analysis of the Botswana Portion of the Okavango River Basin: Irrigation Development
		Mbaiwa.J.E.	Transboundary Diagnostic Analysis of the Okavango River Basin: the Status of Tourism Development in the Okavango Delta: Botswana
		Mbaiwa.J.E. & Mmopelwa, G.	Assessing the Impact of Climate Change on Tourism Activities and their Economic Benefits in the Okavango Delta
		Mmopelwa, G.	Okavango River Basin Trans-boundary Diagnostic Assessment: Botswana Component: Output 5: Socio-Economic Profile
		Ngwenya, B.N.	Final Report: A Socio-Economic Profile of River Resources and HIV and AIDS in the Okavango Basin: Botswana
		Vanderpost, C.	Assessment of Existing Social Services and Projected Growth in the Context of the Transboundary Diagnostic Analysis of the Botswana Portion of the Okavango River Basin
	Namibia	Barnes, J and Wamunyima, D	Okavango River Basin Technical Diagnostic Analysis: Environmental Flow Module: Specialist Report: Country: Namibia: Discipline: Socio-economics
		Collin Christian & Associates CC	Technical Report on Hydro-electric Power Development in the Namibian Section of the Okavango River Basin
		Liebenberg, J.P.	Technical Report on Irrigation Development in the Namibia Section of the Okavango River Basin
		Ortmann, Cynthia L.	Okavango River Basin Technical Diagnostic Analysis: Environmental Flow Module : Specialist Report Country: Namibia: discipline: Water Quality
		Nashipili, Ndinomwaameni	Okavango River Basin Technical Diagnostic Analysis: Specialist Report: Country: Namibia: Discipline: Water Supply and Sanitation
		Paxton, C.	Transboundary Diagnostic Analysis: Specialist Report: Discipline: Water Quality Requirements For Human Health in the Okavango River Basin: Country: Namibia

Environmental protection and sustainable management of the Okavango River Basin EPSMO

Cuito Cuanavale, Angola

Tel +267 680 0023 Fax +267 680 0024 Email okasec@okacom.org www.okacom.org PO Box 35, Airport Industrial, Maun, Botswana