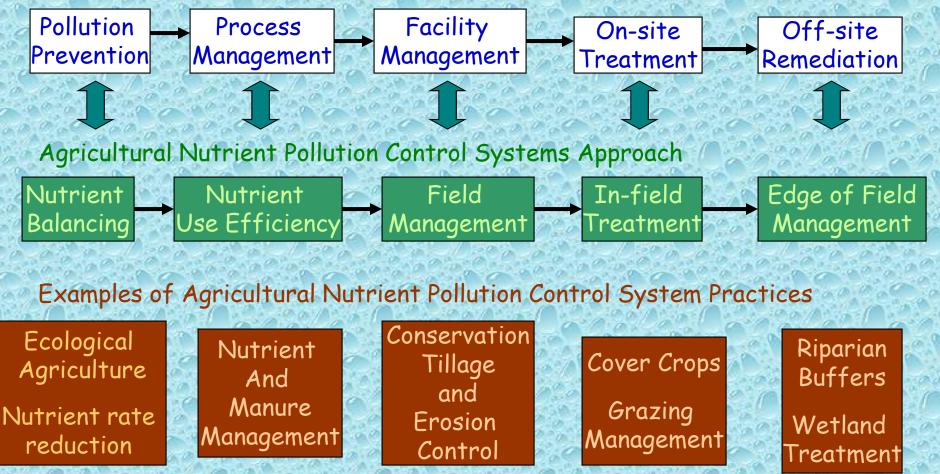
Priority Best Practices for Nutrient Pollution Control

Tom Simpson, Ph.D. Executive Director Water Stewardship Annapolis, MD, USA E-Mail: toms@waterstewardshipinc.org Phone: +1-301-873-2268 Web Site: waterstewardshipinc.org

The analysis and synthesis process

- Task was to evaluate all 28 GEF projects in CEE related to agriculture
- Conducted site visits of selected projects
- Reviewed reports, web sites, presentations, etc from projects
- Compiled list of common practices among projects
- Conducted literature search of primary practices

Developed report and recommendations on moving forward with <u>systematic</u> approach focused on Water priority practices identified

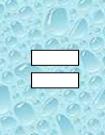

Using a systems approach to nutrient pollution control · Develop whole farm or catchment water guality protection program to achieve target Use a systems approach that identifies BMPs and matches them to key "intervention" points Implement BMPs over time based on impact, cost and farmer interest Make operation and maintenance a critical element

in pollution control plan

Applying a Traditional Industrial Pollution Control Approach to Agricultural Nutrient Pollution Control

Industrial Pollution Control Systems Approach

T Simpson, 1-2008


Eight Priority Best Practices

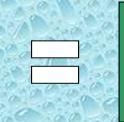
- Nutrient management
- Manure management
- Wetland restoration/creation
- Riparian buffers
- Conservation tillage/erosion control
- · Cover crops
- Grazing management

Ecological/organic production systems.

Pollution Prevention

Nutrient Balancing

Ecological Agriculture


- Not really a Best Practice but an ecological production system
- Decision to enter production system should require commitment to minimizing water quality impacts

Crediting all nutrients from all sources

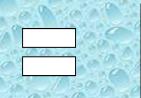
Rotations that balance nutrients, which usually means more perennial crops in rotation

Process Management

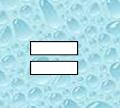
Nutrient Use Efficiency

Nutrient Management

- Proper timing, rate and method of nutrient application
- Credit all nutrient sources, including manures
- Match nutrient use to overall crop management
- Slow release fertilizer/compost to match crop need


Manure management

- Proper storage and handling
- Uniform application at rates to match crop needs
- Timing and method of application to minimize loss



- Control erosion
 - Conservation tillage
 - Maintaining plant residue cover
 - Contour tillage, terraces, etc, if tillage necessary
- Maintain or improve soil quality
 - Residue management and minimize soil disturbance
 - Include perennials in rotation
 - Legume and small grain cover crops

On-site Treatment

In-field Treatment

Grow "cover crops" following summer annuals

- Unfertilized cereal grains (rye ,barley, wheat)to trap fall nitrogen and control; preferable not to harvest residue
 - Legumes to "grow" N for next year and erosion control

Grazing management

- Maintain healthy grass cover
- Proper stocking density
- Rotational grazing where possible
 Stream exclusion

and remote watering

Off-site Remediation

Edge of Field Management

Streamside buffers (10-30 M wide)

- Grass or forest(preferred)
- 5M Mini-buffers provide some nutrient reduction
- Wider (30M+) provides better nutrient removal but may not be practical/acceptable in many cases

Wetland treatment systems

- Restored wetland is "plugging" drainage of existing drained wetland
 - Restores natural wetland function, including nutrient removal
 - Should be planned/sized to treat runoff from catchment
- Constructed treatment wetland
 - May or may not have been natural wetland
 - Designed to provide desired water retention (~3-7d)
 - May manage flow at constant rate or have flow(treatment will vary)
 - Wetland system do not provide adequate disinfection for wastewater

Agro-forestry: Coupling water quality with biomass production in riparian buffers

Traditional Coppicing – sustainable understory tree "sprouts" regularly harvested – renewed interest in UK

Recent work with riparian tree plantations - rapid rotation

Plant selection and management is key

Coppicing Ash Wood Herefordshire, UK

Closing Observations

- Integrated, systematic approach is critical
- Assuring implementation, operation and maintenance of practices essential to real impact
- There is no single "magical" Best Practice
- Systems must match farm conditions and farmer willingness and capability
- Discussed 8 "priority practices" but many others exist or are "new" that may be priorities on certain farms and regions
- Use all the available tools in your tool box

