Guarani Aquifer System (GAS): from knowledge to governance

Luiz Amore

Environmental Protection and Sustainable Development of the Guarani Aquifer System Project

UNESCO – GEF 5th IWF' 2009 Cairns, 24-29 October 2009

Scenario before 2001

- Problem: Lack of social knowledge of GAS.
- <u>Actors</u>: dispersed institutions in each country
 - Water Resources
 - Environment
 - International Relations
- <u>Context</u>: Marginal place for groundwater in policy agenda and no place in public opinion agenda (invisibility and lack of knowledge that implied the spread of myths and fears).

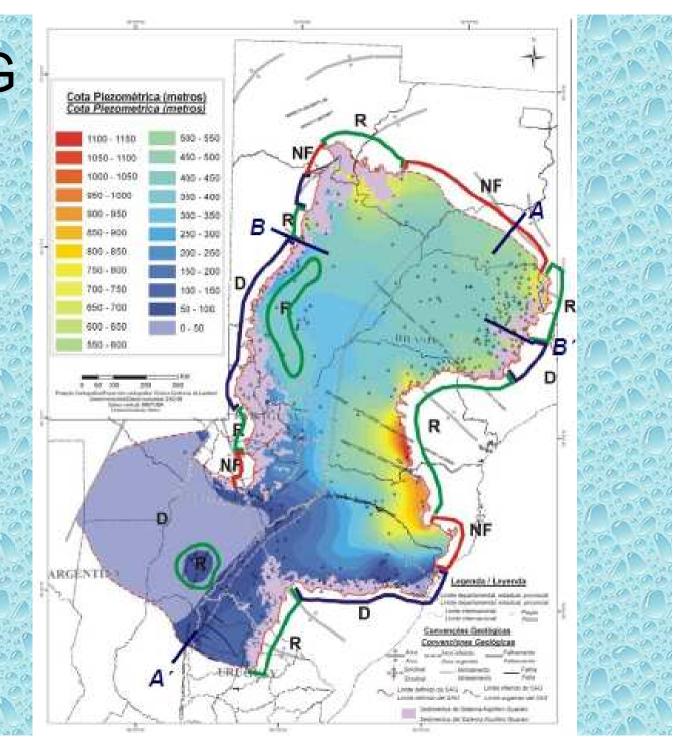
Current situation (2009)

- <u>Problem solved</u>: social knowledge about GAS existence;
- <u>Actors</u>: Cooperation Framework, integration of national & sub-national institutions, with focus on local level (prerequisite for governance in GW);
- <u>Context</u>: repositioning of groundwater in public policy, governmental agendas and growing presence in public opinion agenda (prerequisite for civil society participation).

Huge advances in GAS knowledge

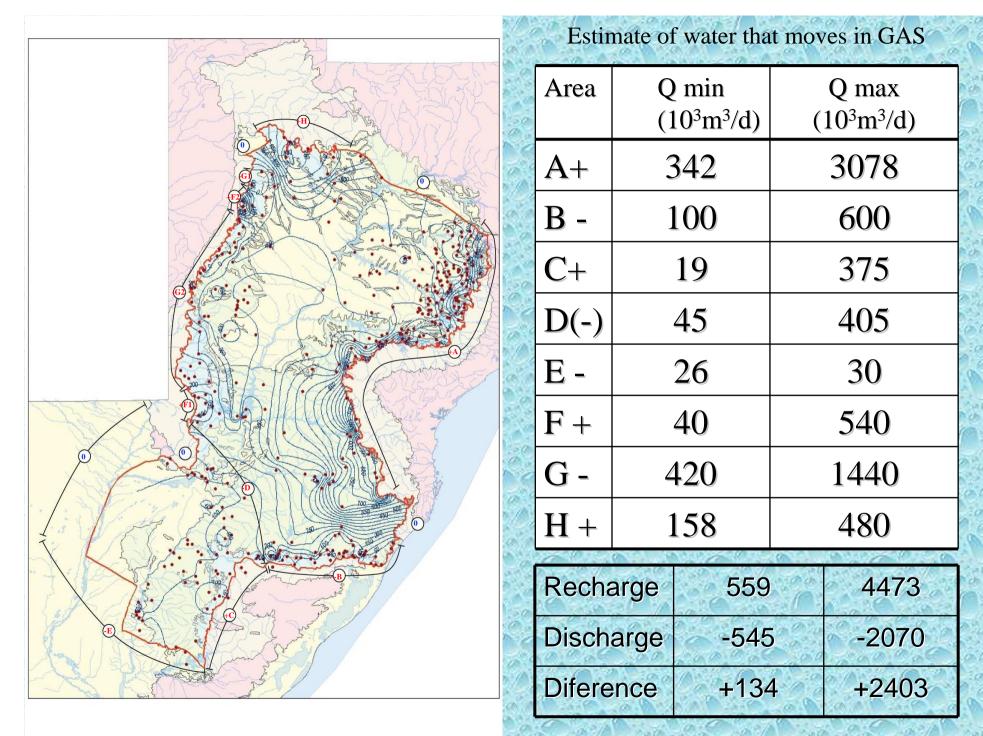
Before

- Aquifer system with no strata delimitation;
- Database limited and with no consistency;
- Important transboundary fluxes;
- Unknown boundaries;
- Erroneous geometry;
- Flourish areas considered as recharge areas;
- Unknown discharge;
- No understood relationship between local and regional fluxes.

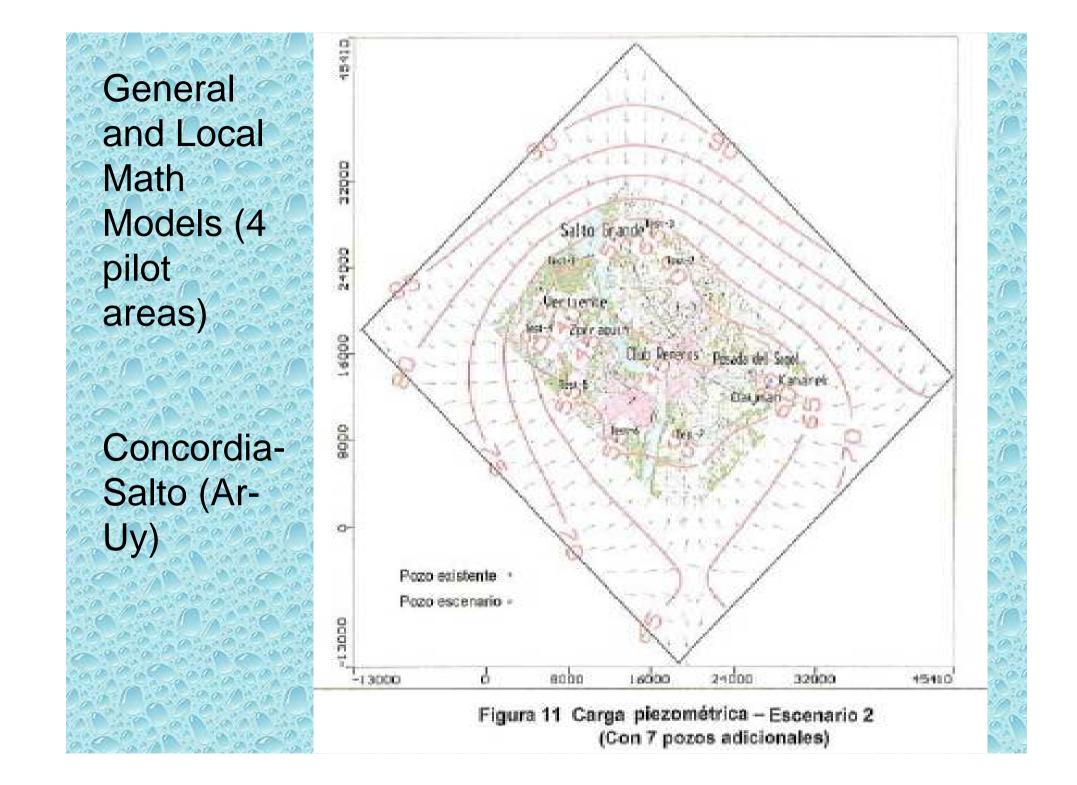

Today

- GAS stratum identified;
 Consistent database that supports mapping developments;
 Huge water reservoir, little magnitude of fluxes (locally limited) in the management scale;
 Boundaries determined (including SW perimeter);
 Geometry, recharge and discharge areas recognized;
 Relationship regional – local fluxes understood;
- GW management tools
 available;
- SAP to be implemented!

BASES FOR MANAGEMENT, ENVIRONMENTAL PROTECTION, AND SUSTAINABLE USE


Main SAG areas

00 A 1



Water availability

- Static reserves: 29551 km³ (± 4000) (considering permeable volume as 90%)
- Lowering 400 m: drainable reserves is 2,014 km³ (± 270) (6%) and only 25 km³ compressible reserves (confined aquifer)
- Actual exploitation: 1.04 km³/year (same as recharge)
- Outcrops: 124,650 km²; Recharge area: 83,500 km²; Total area: 1,087,879 km²

	Estimate of water that moves in GAS							
0.6.0	Area	-	2 min 10 ³ m ³ /d) (342		Q max 10 ³ m ³ /d)			
2.6	A+	(*)			3078			
5	B -	1	100		600	6		
5.6	C+		19		375			
16 No	D(-)		45		405	200		
	E -		26		30			
6	F +		40		540			
Sec.	G -	L	420	1440 480		1000		
	H +	1	158			100		
5	Recharge Discharge		559		4473			
			-545		-2070)		
	Diference		+134		+2403			
¢.	S de la	1	10 Saber	A sal	Sector and			

Focus regional / local

Technical knowledge produced at regional level (no interference + very slow flux velocity) determines

> **Necessary local management** (build upon existing institutions)

Recent advances at countries' level

Four countries: Water as Public Good;
Argentina: 5/6 provinces rule the use and protection of groundwater;
Brazil: in 7/8 states the state policy on water resources present specific norms and two national programs for support and funding;

Paraguay: Water Resources Law under regulation process;

Uruguay: national water plebiscite and regulation proposal with SAG unit.

Amplify local /regional

Local management requires cooperation to build knowledge, develop tools, frames, and above all institutionalization (prerequisite for governance)

Can only been developed from a regional perspective and framework

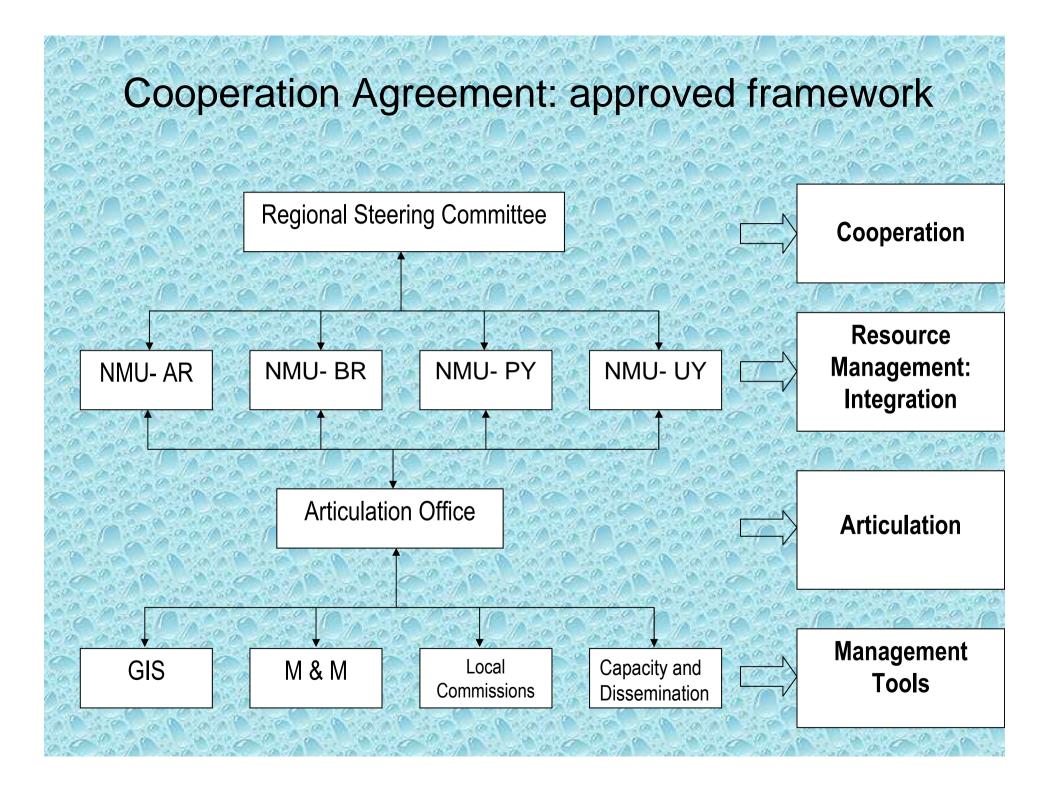
Recent advances at local-pilot level

Concordia (Ar) – Salto (Uy): minimum distance between wells (2 km-Uy and 10 km-Ar proposal);
Ribeirao Preto (Br): GW restriction/exploitation zones defined to mitigate static level lowering;
Itapua: creation of the Capibary Watershed Committee supported by Pilot Commission;
Rivera (Uy) – Santana (Br): students and teachers participation process. Transboundary Diagnostic Analysis – TDA Strategic Action Program – SAP

Seed of governance process.

Agreed and joint needs identification

TDA


SAP

Selected priorities to public policy development

Strong participatory process

Major SAG management tools and the need of continuity

- *****GAS GIS ✤ Basic map *HDB Monitoring network Numerical modeling Local Committees Information dissemination
- Maintenance and up dated
- ✓ Functioning
- Recognition and support by countries
 Capacity building

Argentina Brazil Paraguay Uruguay

and a

Children Orio

GIS	responsible			
M&M		responsible		
Local Committees	Concordia (AR)-Salto (UY)	Ribeirão Preto (BR)	Itapúa (PY)	Rivera (UY)- Santana (BR)
Capacity			responsible	
Headquarter				responsible

National responsible institutions

- Argentina: Subsecretaría de Recursos Hídricos del Ministerio de Planificación Federal, Inversión Pública y Servicios
- Brazil: Secretaria de Recursos Hídricos e Ambiente Urbano do Ministério do Medio Ambiente
- Paraguay: Dirección General de Protección y Conservación de Recursos Hídricos de la Secretaria del Ambiente
- Uruguay: Dirección Nacional de Agua y Saneamiento del Ministerio de Vivienda Ordenamiento Territorial y Medio Ambiente

Agreement: Plata Watershed Treaty (CIC); an SAG specific treaty has being considered

Final comments

- Project catalytic cooperation (regional, national and sub-national)
- Management instruments have being internalized by countries
- Institutional difficulties to start up a new phase supported by the countries
- Local dimension is difficult to achieve but much more sustainable
- SAP implementation support

Thank you for your interest

www.sg-guarani.org Luiz.Amore@gmail.com